
58    acm Inroads    2012 June  •  Vol. 3  •  No. 2

comprehensive art ic le

The First Five Computer Science Principles Pilots: Summary and Comparisons

■	 Grading: Weekly reading quizzes and
homework (15%), 2-3 page paper [later
evolving into a 1-page blog with 3 manda-
tory response paragraphs to other students
posts] (15%), Midterm Project (15%), Final
Project (15%), Quest [early, sanity-check
exam, halfway between a “quiz” and a “test”]
(5%), Midterm (15%), and Final (20%).

c) Course Design
The name of the course originated from
Grady Booch’s SIGCSE 2007 Keynote in
which he exhorted us to share the “Passion,
Beauty, Joy and Awe” (PBJA) of computing.

We simplified the name (fearing that “awe” may imply more “fear”
than “wonder,” and that “passion” is internal, not taught) to “Beauty
and Joy of Computing" (BJC). Our whimsical logo captures the
spirit of the course, while paying homage to its roots (the colors
of the BJC letters come from BYOB and the Blown to Bits book).

Between the course title, the idea that this may be the last com-
puting course many students ever take, and the need to adequately
prepare them for CS61A, several key design principles emerged
(many directly from the SIGCSE panels!):

■	 As much as possible, show beautiful and joyful examples of com-
puting. This includes leveraging (and extending via BYOB) the
incredibly well-designed, simple-yet-powerful graphical develop-
ment environment of Scratch, delightful fractals to teach recursion,
elegant higher-order functions that use abstraction to hide messy
details of control flow, showing how climate simulations are saving
the planet, the internet is wonderfully enabling, etc.

■	 Half of the course should be the societal implications of technology. We
assigned an incredible book, Blown to Bits (Abelson, Ledeen, and
Lewis), which we supplement with videos and other readings.

■	 Programming should be joyful, so allow students to choose any
project they wish.

■	 Deep learning happens by doing, not by listening, so use the lab-
centric model of instruction (here, 4 hours of Moodle-driven labs
per week).

■	 Show relevance of computing to the students. Every lecture
begins with a “technology in the news” discussion, selected to
be most relevant to the student demographic. They are culled

a) How CS10 Fits In At
UC Berkeley

The course is intended for non-CS majors.
For students in the College of Letters and Sci-
ences, it fulfills the "Quantitative Reasoning"
breadth requirement. It is not required for CS
majors, but some intended CS majors with
no prior programming experience decide to
take it as preparation for our first course for
CS majors. In addition, many non-CS majors
enjoy CS10 enough to continue with the se-
quence for majors.

The department, on our recommenda-
tion, stopped offering our two other ven-
erable (Scheme programming-only) non-CS major classes so
these students would all flow through CS10. We have since seen
a dramatic growth in enrollment, from 80 students in both fall
2010 and spring 2011 terms to 240 in both fall 2011 and spring
2012 terms. In the spring of 2011, the course was chosen by the
UC Online Instruction Pilot Program (OIPP) as an online course
pilot, and we hope to go live with the online version of CS10 in
the fall of 2012.

b) Course Specifics
■	 	Lectures: Two 50-minute periods per week, MW

■	 Labs: Two 110-minute closed labs driven by Moodle activities
with Teaching Assistant (TA) and Lab Assistant supervision, TTh

■	 Discussion: One 50-minute recitation period led by TA (used for
lecture review, programming problem work in small teams, reading
discussions, CS Unplugged exercises, role playing, computer disas-
sembly, group design of video games, project work, etc.)

■	 Format	in	a	given	week: Lecture - Lab - Lecture - Lab - Discussion

■	 Course: 14-week semester, yielding 7 * 14 = 98 contact hours

■	 Credit	Hours: 4 semester credit hours

■	 Fulfills	Requirements: Quantitative Reasoning

■	 Attendance: 80 started; 76 finished

■	 Programming	Language: Scratch and Build Your Own Blocks
(BYOB) based on Scratch. Soon to be browser-based Snap! which
works on mobile devices.

CS PrinCiPleS Pilot at UniverSity
of California, Berkeley

Author: Daniel D. Garcia, Brian Harvey, and Luke Segars
Course Name: CS10: The Beauty and Joy of Computing
Pilot: Autumn semester 2010

2012 June  •  Vol. 3  •  No. 2    acm Inroads    59

comprehensive art ic le

from Slashdot, Technology Review, NY Times Technology, CNN
Technology, Digg, etc.

■	 Lecture should be engaging, so employ peer instruction through
clickers that are provided as free loaners to all students.

■	 Invite guest speakers from industry to share “behind the scenes,
how the technology behind our business works” talks, to reinforce
& ground the importance of the big ideas. We’ve been fortunate
to have accessible and inspiring talks from engineers Raffi Kriko-
rian from Twitter™ and Tao Ye from Pandora™.

■	 Experts in that area should present exciting computing research
areas. These should be a broad “here’s the entire field” overview,
not a narrow “here’s my research” talk. We invited departmental
faculty Bjoern Hartmann and Armando Fox to speak on HCI and
Cloud Computing, and course instructors added their survey of
the field of artificial intelligence.

■	 Make the entire course free to students, so the class can be
exported to high schools easily. Everything from the IDE to the
book is available for free.

■	 Learning to program can be deeply frustrating, so encourage both
their three-week projects to be done in pairs (even the occasional
teams of three).

■	 It sometimes takes a while for this material to “click” and students
often have a bad day, so allow a high score on a later exam to
overwrite a poor performance on an earlier exam.

Lecture Topics (and number of lectures on that topic)

■	 	Abstraction (1) – Abstraction as a reasoning and problem solving tool

■	 Video	Games (1) – The development of video game platforms
and technology, games with a purpose (GWAP)

■	 3D	Graphics (1) – Fundamentals of 3D graphics (a fun, “How It
Works” explanation)

■	 	Algorithms (2) – Divide and conquer algorithms and analysis
techniques

■	 	Functions (1) – How to create functions in BYOB and the beauti-
ful implications

■	 Programming	Paradigms (1) – The benefits and trade-offs of each

■	 	Concurrency (1) – Dealing with concurrency on one computer,
both historical and BYOB-based

■	 Distributed	Computing (1) – Dealing with concurrency between
computers, both historical and BYOB-based

■	 	Recursion (3) – Emphasis on graphical recursion (fractals) and
non-linear recursion since looping constructs are available

■	 Social	implications	of	computing (2) – Discussion of the ethical,
economic, security and privacy implications of computing (Educa-
tion, privacy, risks, Patents and copyrights, war, community, etc.)

■	 Applications	that	changed	the	world (1) – Commentary and technical
details of some applications of computing that have changed the world
(Transistor, PC, WWW, Internet, Search Engines, Google Maps,
Video Conferencing, Social Computing, Cloud Computing, etc.)

■	 Computing	in	Industry (1) – Industrial guest (Twitter, in Fall
2011 we added Pandora) explains how they use computing

■	 Saving	the	World	with	Computing	(CS	+	X) (1) – Guest from
Lawrence Berkeley National Labs talks about climate simulation,
protein folding, digital humans, and other supercomputer activi-
ties that are saving the world

■	 Higher	Order	Functions	and	Lambda (2) – Higher order func-
tions and lambda. The same programming ideas introduced in CS3
(the beauty and power of functions as data, anonymous functions)

■	 Cloud	Computing (1) – Fundamentals of cloud computing (a
“How it Works” explanation)

■	 Game	Theory (1) – Deep Blue and general game strong solving
techniques

■	 Artificial	Intelligence (1) – Historical progress and current direc-
tions and innovation in AI

■	 	HCI (1) – Historical progress and current directions and innova-
tion in Human-Computer Interfaces

■	 Limits	of	Computing (1) – Revisit analysis techniques and discuss
NP problems, computers are finite (for representations)

■	 Future	of	Computing (1) – Discussion of current and future areas
of innovation and research

■	 Wrap-up (1) – Project demos and a sneak peak at EECS under-
grad course offerings

Lab Topics (and number of labs on that topic)

■	 Learn	Scratch (3)

■	 Learn	BYOB (1) – Learn how to create “functions” or “Blocks”
in BYOB

■	 	Lists (2)

■	 	Algorithms (2)

■	 	Concurrency (1)

■	 Distributed	Computing (1)

■	 Recursion (3)

■	 Higher	Order	Functions	and	Lambda (2)

■	 Hash	Table (1)

■	 Simulations (1)

■	 Work	on	projects (6)

Reading List: See the course web site (below) for a complete list.

d) Evidence of Student Work
Student papers were topical and interesting. Samples titles: Net
neutrality, Prosthetic Arms, Record Companies No Longer Rule
the Roost, Computers in Astrophysics, News for the Information
Age, AI & Transportation and Electronic Privacy.

Three programming projects (across three consecutive years of
teaching the course) were chosen as the best that students ever pro-
duced (in only three weeks):

60    acm Inroads    2012 June  •  Vol. 3  •  No. 2

comprehensive art ic le

BYOB … mostly worked. Several key bugs were squashed during
the fall 2009 “half pilot” as development continued. The from-
the-ground rewrite now in progress (called Snap!) will address the
remaining speed problems and will run in a browser and on every
smart mobile device.

2-3 Page Paper … didn’t scale, and didn’t take advantage of the social
component. The care and effort we gave to the papers for the half-
pilot (each of the co-instructors read every paper) clearly didn’t
scale as we moved to 80 students for the pilot. We replaced this
assignment with a one-page blog where students were required to
read three other students’ blogs (two assigned by us, the other of
their choice) and write at least a single paragraph of reflected com-
mentary for each.

f) Links, Resources, Acknowledgments
The fall 2010 pilot was co-taught by Dan Garcia and Brian Har-
vey, with help from teaching assistants Luke Segars and Jon Kot-

ker. The fall 2009 pre-AP course
was co-developed by Dan, Brian,
Jon, Mike Clancy, Colleen Lewis,
George Wang, Glenn Sugden,
Stephanie Chou, Brandon Young,
Wayland Siao, Gideon Chia, and
Daisy Zhou, with collaboration
of local high school teachers Ray
Pedersen, Eugene Lemon and
Josh Paley.

The entire course curriculum
is available at http://bjc.berkeley.
edu. We offer teacher prepara-
tion workshops to groups of 20 or
more teachers in a locality; par-

ticipants get a stipend and we bring an experienced BJC instructor
to your site. See the web site for more details.

The	current	class	Web	Site:	
http://inst.eecs.berkeley.edu/~cs10/

Build	Your	Own	Blocks	(BYOB)	based	on	Scratch,	and	Snap!
http://byob.berkeley.edu

Testimonials	about	CS10	:	The	Beauty	and	Joy	of	Computing
http://www.youtube.com/playlist?list=PL48C2AF5762B2D
32D

Fall	2010	High-Definition	lecture	videos:
http://www.youtube.com/playlist?list=PLECBD29A17AAF
6EF9

Ensemble	 Computing	 Portal	 for	 commenting	 and	 rating	 BJC	
learning	items

http://www.computingportal.org/bjc_collection

DOI: 10.1145/2189835.2189853 © 2012 ACM 2153-2184/12/06 $10.00

Picoboard Guitar Hero (Pierce Vollucci and Sina Saeidi, fall 2009);
these students used a USB PicoBoard sensor board and a keyboard
and built their own guitar, then wrote a Guitar Hero–style game
to train them to play it! The musician would press keyboard keys
for different notes and pluck one of the wire frets, which would
complete a circuit, and the PicoBoard would let BYOB know what
note to play. They performed “The Battle Hymn of the Republic”
during the final presentations!

Magic Machine 3.0 (Max Dougherty and Victor Lymar, fall
2010); this incredible program featured an editable 2D grid; time
vs instrument (with higher-pitched instruments at the top, drums
at the bottom). Clicking in a grid location placed a blue square
there, meaning that note should be played at that time. A grey
vertical bar slid to the right (and reset on the left after it reached
the end), and played the multi-track loop over and over. The user
could change the instrument using the words on the left column
and change editing modes using the words on the top.

Kinect Archery (Jim Knudstrup, Amanda Atkinson and Vivian
Lo, fall 2011); these students hooked up a Microsoft Kinect to
BYOB, and authored a very playable archery game that used the
Kinect to aim the bow, and physics to control the trajectory of the
arrows. Video available at http://youtu.be/wlHwbCcujvo

e) What Worked And Didn’t

Sufficient development time, outstanding team, small half pilot …
worked. The course was developed over the eighteen months prior
to the official AP CS pilot by three teaching-track faculty and ten of
the strongest graduate and undergraduate teachers. By the time we
launched with the full course pilot in the fall of 2010, we felt we had
debugged most of the issues with the software and course content.

Peer Instruction ... worked. Students responded that they were de-
lighted they didn’t need to pay for clickers (as in all their other
classes) and that it made lecture more interesting and dynamic.

Videotaping lectures ... mostly worked. We learned that it’s hard to
have a well-lit instructor as well as a dark screen, and to keep lec-
turers from pacing the floor.

The First Five Computer Science Principles Pilots: Summary and Comparisons

